Coral emx-Am can substitute for Drosophila empty spiracles function in head, but not brain development.

نویسندگان

  • Beate Hartmann
  • Martin Müller
  • Nikki R Hislop
  • Bettina Roth
  • Lucija Tomljenovic
  • David J Miller
  • Heinrich Reichert
چکیده

The ems/Emx genes encode homeodomain transcription factors that have conserved actions in anterior embryonic patterning in bilaterian animals ranging from insects to mammals. Recently, genes of the ems/Emx family have been identified in cnidarians raising the possibility that some of their developmental functions might be conserved throughout the Eumetazoa. To determine to what extent functions of a cnidarian ems/Emx protein have been retained across phyla, we carried out cross-phylum rescue expression experiments in which the coral Acropora emx-Am gene was misexpressed in Drosophila ems mutants. Our findings demonstrate that coral emx-Am can substitute for fly ems in embryonic head development and rescue the open head defect and the loss of segmental engrailed expression domains in Drosophila ems mutants. In contrast, the coral emx-Am gene can not substitute for fly ems in embryonic brain development. Even when a hexapeptide motif of the type present in the Drosophila ems gene is inserted into the coral emx-Am gene, rescue of the developmental brain defects in fly ems mutants fails. These findings have implications for understanding the evolutionary origins of head versus brain patterning mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals

We have isolated and studied the expression pattern of Xemx1 and Xemx2 genes in Xenopus laevis. Xemx genes are the homologues of mouse Emx genes, related to Drosophila empty spiracles. They are expressed in selected regions of the developing brain, particularly in the telencephalon, and, outside the brain, in the otic vesicles, olfactory placodes, visceral arches and the developing excretory sy...

متن کامل

Interaction of gap genes in the Drosophila head: tailless regulates expression of empty spiracles in early embryonic patterning and brain development

Unlike gap genes in the trunk region of Drosophila embryos, gap genes in the head were presumed not to regulate each other's transcription. Here, we show that in tailless (tll) loss-of-function mutants the empty spiracles (ems) expression domain in the head expands, whereas it retracts in tll gain-of-function embryos. We have identified a 304bp element in the ems-enhancer which is sufficient to...

متن کامل

Conserved roles of ems/Emx and otd/Otx genes in olfactory and visual system development in Drosophila and mouse

The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors-the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate...

متن کامل

The Caenorhabditis elegans ems class homeobox gene ceh-2 is required for M3 pharynx motoneuron function.

Several homeobox genes, for example those of the ems class, play important roles in animal head development. We report on the expression pattern and function of ceh-2, the Caenorhabditis elegans ems/Emx ortholog. CEH-2 protein is restricted to the nuclei of one type of small muscle cell, one type of epithelial cell, and three types of neurons in the anterior pharynx in the head. We have generat...

متن کامل

Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila

We analyse the role of the empty spiracles (ems) gene in embryonic brain and ventral nerve cord development. ems is differentially expressed in the neurectoderm of the anterior head versus the trunk region of early embryos. A distal enhancer region drives expression in the deutocerebral brain anlage and a proximal enhancer region drives expression in the VNC and tritocerebral brain anlage. Muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 340 1  شماره 

صفحات  -

تاریخ انتشار 2010